
Programmierunterricht
Chancen und Herausforderungen

Dennis Komm

Fachschaftstag Bern – 3. Dezember 2024

Herzlich willkommen

Roadmap

1. Vergangenheit Informatik- und Programmierunterricht

2. Gegenwart Informatikunterricht in der Schweiz

3. Zukunft Eine Vision des Informatikunterrichts von morgen

4. Stolpersteine auf dem Weg Fehlvorstellungen im Programmierunterricht

Programmierunterricht – Chancen und Herausforderungen Dennis Komm Fachschaftstag Bern – 3.12.2024 1 / 31

Warum unterrichten wir Informatik?

Informatik als Schulfach einzuführen ist keine neue Idee

Die Geschichte reicht mehr als 50 Jahre zurück

. . . mit einigen Rückschlägen (Informatik ̸= Anwendungskompetenzen)

Und so können wir heute noch immer von einer Pionierzeit sprechen

«Es erscheint unumgänglich, [der Informatik] in Zukunft denselben
Stellenwert an den Gymnasien zu geben, wie etwa der Mathematik.
Jede zukunftsorientierte Ausbildung beruht aber auf fundamentalen
Prinzipien. So haben Algorithmen und Datenstrukturen in der
Informatik dieselbe Bedeutung wie Funktionen und Matrizen in der
Mathematik.»

“Société Suisse de l’Informatique Educative (SSIE)”
Arbeitsgruppenbericht, 1985

Programmierunterricht – Chancen und Herausforderungen Dennis Komm Fachschaftstag Bern – 3.12.2024 2 / 31

Warum unterrichten wir Informatik?

«This book has only one major purpose—to trigger
the beginning of a new field of study: computer
programming as a human activity, or, in short, the
psychology of computer programming.»

Gerald M. Weinberg, 1971

Programmierunterricht – Chancen und Herausforderungen Dennis Komm Fachschaftstag Bern – 3.12.2024 3 / 31

Warum unterrichten wir Informatik?

Bereits vor Jahrzehnten kamen die ersten Programmiersprachen für die Lehre auf den Markt

BASIC (1964)

i

[11 U.S. DEPARTMENT OF HEALTH, EDUCATION IL WELFARE

OFFICE OF EDUCATION

-4°

ON0
CO
r4'
CI
CI
La

I I

THIS DOCUMENT HAS BUN REPRODUCED EXACTLY AS RECEIVED FROM THE

PERSON OR ORGANIZATION ORIGINATING IT, POINTS OF VIEW OR OPINIONS

STATED DO NOT NECESSARILY REPRESENT OFFICIAL OFFICE OF EDUCATION

POSITION OR POLICY.

Programming-Languages as a Conceptual

Framework for Teaching Mathematics

Bolt Beranek and Newman Inc.
50 Moulton Street
Cambridge, Massachusetts 02138

W. Feurzeig
S. Papert
M. Bloom
R. Grant
C. Solomon

Final Report on the first fifteen
months of the LOGO Project

30 November 1969

Submitted to:

National Science Foundation
Office of Computing Activities
1800 G Street, NW
Washington, D. C. 20550

Contract NSF-C 558

LOGO (1967)

Acta Informatica I, 35-63 (t97t)
�9 by Springer-Verlag 1971

The Programming Language Pascal
N. WrRTH*

Received October 30, t 970

Summary. A programming language called Pascal is described which was developed
on the basis of ALGOL 60. Compared to ALGOL 60, its range of applicability is con-
siderably increased due to a variety of data structuring facilities. In view of its
intended usage both as a convenient basis to teach programming and as an efficient
tool to write large programs, emphasis was placed on keeping the number of funda-
mental concepts reasonably small, on a simple and systematic language structure,
and on efficient implementability. A one-pass compiler has been constructed for the
CDC 6000 computer family; it is expressed entirely in terms of Pascal itself.

1. Introduction

The development of the language Pascal is based on two principal aims. The
first is to make available a language suitable to teach programming as a systematic
discipline based on certain fundamental concepts clearly and natural ly reflected
by the language. The second is to develop implementations of this language which
are both reliable and efficient on presently available computers, dispelling the
commonly accepted notion tha t useful languages must be either slow to compile
or slow to execute, and the belief tha t any nontrivial system is bound to contain
mistakes forever.

There is of course plenty of reason to be cautious with the introduction of yet
another programming language, and the objection against teaching programming
in a language which is not widely used and accepted has undoubtedly some justi-
f icat ion--a t least based on short- term commercial reasoning. However, the choice
of a language for teaching based on its widespread acceptance and availability,
together with the fact tha t the language most widely taught is thereafter going
to be the one most widely used, forms the safest recipe for stagnation in a subject
of such profound paedagogical influence. I consider it therefore well worth-while
to make an effort to break this vicious circle.

Of course a new language should not be developed just for the sake of novelty;
existing languages should be used as a basis for development wherever they meet
the chosen objectives, such as a systematic structure, flexibility of program and
data structuring, and efficient implementabillty. In that sense ALGOL 60 was used
as a basis for Pascal, since it meets most of these demands to a much higher
degree than any other s tandard language [!]. Thus the principles of structuring,
and in fact the form of expressions, are copied from ALGOL 60. I t was, however,
not deemed appropriate to adopt ALGOL 60 as a subset of Pascal; certain con-
struction principles, particularly those of declarations, would have been incom-

* Fachgruppe Computer-Wissenschaften, Eidg. Technische Hochschule, Ziirich,
Schweiz.

3*

PASCAL (1970)

Programmierunterricht – Chancen und Herausforderungen Dennis Komm Fachschaftstag Bern – 3.12.2024 4 / 31

Wo wir stehen
Die Situation an Schweizer Schulen

Die Situation in Schweizer Schulen

Volksschule KG–9

Lehrplan 21 in deutschsprachigen Kantonen

Modul Medien und Informatik

«École obligatoire» KG–9

«Plan d’études romand» in der Romandie

Modul Éducation numérique

Formulierte Kompetenzen bzw. Objectifs d’Apprentissage für verschiedene Schulstufen

Recht ehrgeizige Ziele bezüglich Lernzielen

Gymnasium / «Gymnase» 10–12

Grundlagenfach bzw. «Disciplines Fondamentales» seit August 2024

Möglichkeit eines Schwerpunktfachs bzw. «Option Spécifique»

Programmierunterricht – Chancen und Herausforderungen Dennis Komm Fachschaftstag Bern – 3.12.2024 5 / 31

«Kompetenzen» und «Objectifs d’Apprentissage»

MI 2.2a [KG–2] Die SuS können formale Anleitungen erkennen und ihnen folgen (z. B. Koch- und
Backrezepte, Spiel- und Bastelanleitungen, Tanzchoreographien)

MI 2.2f [3–6] Die SuS können Programme mit Schleifen, bedingten Anweisungen und Parametern
schreiben und testen

EN 22 [7–9] Die SuS können Programme mit Bedingungen und Schleifen in einer visuellen
Programmiersprache erstellen und vergleichen, um einfache Probleme zu lösen

EN 32 [7–9] Die SuS können verschiedene Algorithmen zur Lösung desselben Problems vergleichen
und die Lösungen bewerten

Programmierunterricht – Chancen und Herausforderungen Dennis Komm Fachschaftstag Bern – 3.12.2024 6 / 31

Rahmenlehrpläne für die gymnasiale Oberstrufe

1.2.1 Die SuS können Probleme lösen, indem sie sie in Teilprobleme zerlegen

1.2.2 Die SuS können einfache Algorithmen zur Lösung von Problemen entwerfen oder sich
künstlerisch mittels Programmierung ausdrücken

1.3.1 Die SuS können einen gut lesbaren und strukturierten Programmiercode schreiben und
dokumentieren

3.3.1 Die SuS können verschiedene Cyber-Bedrohungen (z. B. Malware, Social Engineering)
und Abwehrstrategien benennen, beschreiben und Vorsichtsmassnahmen erklären

Programmierunterricht – Chancen und Herausforderungen Dennis Komm Fachschaftstag Bern – 3.12.2024 7 / 31

Die Situation in Schweizer Schulen

Aber. . .

«Modul» impliziert ein sehr kleines Stundengefäss

Umsetzung nur interdisziplinär und mit gut ausgebildeten Lehrpersonen

Insbesondere herausfordernd für Lehrpersonen der Volksschule

Aber auch für Gymnasial-Lehrpersonen

Programmierunterricht – Chancen und Herausforderungen Dennis Komm Fachschaftstag Bern – 3.12.2024 8 / 31

Wo wir stehen
Die Situation an Schweizer Universitäten

Beispiel: ETH-Bachelor «Humanmedizin»

Programmierunterricht – Chancen und Herausforderungen Dennis Komm Fachschaftstag Bern – 3.12.2024 9 / 31

Beispiel: ETH-Bachelor «Humanmedizin»

Insgesamt 6 ECTS Informatik / Data Science (zusätzlich zu Grundlagen in Statistik)

Aktuell angenommene Informatik-Grundlagen: Keine

Ziele im fünften Semester:
– Einführung in Python
– Algorithmen und Datenstrukturen «light»
– «Computational Thinking»

Ziele im sechsten Semester:
– Verwendung von speziellen Python-Librarys
– Machine-Learning-Grundlagen
– Anwendungen in der Humanmedizin

Programmierunterricht – Chancen und Herausforderungen Dennis Komm Fachschaftstag Bern – 3.12.2024 10 / 31

Wohin wir wollen
Eine Vision, wie Informatikunterricht aussehen wird

Ein «Shift» nach unten

Primarschule

Erste Programmiererfahrung

Grundlagen wie binäre Suche etc.

Bewusstsein für Fehlvorstellungen

Sekundarstufe I

Programmierkonzepte

Eine formalere Sicht auf Algorithmen

«Computational Thinking»

Sekundarstufe II

Fortgeschrittene Programmierkonzepte

Algorithmen und Datenstrukturen

Gesellschaftliche Auswirkungen

Universitäten

Algorithmen im Fachbereich

Data Science, Machine Learning etc.

«Real World»-Beispiele

Programmierunterricht – Chancen und Herausforderungen Dennis Komm Fachschaftstag Bern – 3.12.2024 11 / 31

Ein «Shift» nach unten

Wir leben in einer Pionierzeit:
Schweizer Schulen haben «Mandat», Informatik vom Kindergarten bis Klasse 12 zu unterrichten

Spiral-Curriculum: Führe Konzepte früh ein, iteriere mit steigender Komplexität

Berücksichtige Alltagsbezug der SuS

Aber fokussiere auf «first Principles» statt auf «Blackboxes»

Unterrichte Informatik interdisziplinär (auch im Gymnasium)

Programmierunterricht – Chancen und Herausforderungen Dennis Komm Fachschaftstag Bern – 3.12.2024 12 / 31

Was im Weg ist
Fehlvorstellungen um Informatik

Fehlvorstellungen um Informatik

Seit der Einführung der Programmierung wurden Fehlvorstellungen beobachtet

bzw. wie sie sich manifestieren

Untersuchungen von SuS-Lösungen, Interviews, Log-Files, «Think aloud»-Studien etc.

Sehr aktives Forschungsfeld, nicht nur in der Programmierung

Exploring Programming MisconceptionsAn Analysis of Student Mistakes in Visual Program Simulation ExercisesTeemu SirkiäAalto Universityteemu.sirkia@aalto.fi
Juha SorvaAalto Universityjuha.sorva@aalto.fi

ABSTRACT
Visual program simulation (VPS) is a form of interactive
program visualization in which novice programmers practice
tracing computer programs: using a graphical interface, they
are expected to correctly indicate each consecutive stage in
the execution of a given program. Naturally, students make
mistakes during VPS; in this article, we report a study of
such mistakes.
Visual program simulation tries to get students to act on

their conceptions; a VPS-supporting software system may
be built so that it reacts to student behaviors and provides
feedback tailored to address suspected misconceptions. To
focus our efforts in developing the feedback given by our VPS
system, UUhistle, we wished to identify the most common
mistakes that students make and to explore the reasons
behind them. We analyzed the mistakes in over 24,000
student-submitted solutions to VPS assignments collected
over three years. 26 mistakes stood out as relatively common
and therefore worthy of particular attention. Some of the
mistakes appear to be related to usability issues and others to
known misconceptions about programming concepts; others
still suggest previously unreported conceptual difficulties.
Beyond helping us develop our visualization tool, our study
lends tentative support to the claim that many VPS mistakes
are linked to programming misconceptions and VPS logs can
be a useful data source for studying students’ understandings
of CS1 content.

Categories and Subject DescriptorsK.3.2 [Computers and Education]: Computer and Infor-
mation Science Education—Computer science educationGeneral Terms
Human factors

Keywords
Introductory programming education, CS1, misconceptions,
program visualization, visual program simulation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.Koli Calling ‘12, November 15–18, Tahko, Finland
Copyright 2012 ACM 978-1-4503-1795-5/12/11 ...$15.00.

1. INTRODUCTIONIn this article, we investigate beginner programming stu-
dents’ use of an educational program visualization tool.
There are two primary motivations behind this work.
First, we agree with those within computing education

research who urge us to study all aspects of the ‘didactic
triangle’ formed by the learners, the teachers, and the content
of teaching (including tools that express that content) [2].
We believe that in order to create an educational tool that is
helpful, it is useful to consider the tool not only in the ideal
form in which the teacher or tool author envisions it. We
should also study the relationship between learners and the
tool in actual practice.Second, and more specifically, we wished to explore the
potential of usage logs collected from a program visualization
tool in investigating students’ misconceptions of introduc-
tory programming concepts. The particular form of program
visualization that we studied, visual program simulation,
encourages students to act on their conceptions and mis-
conceptions as they trace program execution graphically.
Visual program simulation logs afford a look at the mistakes
that students make, many of which presumably reflect their
misconceptions. Studying these mistakes has the potential
to improve our knowledge of programming misconceptions
and to improve our visualization tools and their associated
pedagogies.
The next section describes related prior work: research

on misconceptions and visual program simulation. Section 3
lists our research questions and Section 4 explains how we
went about answering them. Section 5 presents an overview
of our results, which are then discussed in more detail in
Section 6. In Section 7, we briefly discuss the quality of our
research design and some limitations of the study. Finally,
Section 8 summarizes our contributions.The empirical study described in this article has also been
reported by the first author in his recent master’s thesis [23].2. RELATED WORK

2.1 Misconceptions
Studies suggest that introductory programming courses

(CS1 courses) are not very successful in teaching students
about fundamental concepts, and that the problem is not
limited to a single institution nor caused by the use of a
particular programming language [7, 12]. Since the 1980s,
researchers have catalogued a vast number of misconceptions
about computer behavior and basic programming constructs
(see [3, 27] for reviews of these studies). For instance, stu-

19

ED 319
 373

AUTHOR

TITLE

INSTIT
UTION

SPONS
AGENCY

PUB DA
TE

CONTRA
CT

NOTE

PUB TY
PE

EDRS P
RICE

DESCRI
PTORS

ABSTRA
CT

DOCUME
NT RES

UME
IR 014

 391

Pea, R
oy D.

Langua
ge-Ind

epende
nt Con

ceptua
l "Bug

s" in
Novice

Progra
mming.

 Techn
ical R

eport
No. 31

.

Bank S
treet

Coll.
of Edu

cation
, New

York,
N:. Ce

nter

for Ch
ildren

 and T
echnol

ogy.

Nation
al Ins

t. of
Educat

ion (E
D), Wa

shingt
on, DC

.;

Spence
r Foun

dation
, Chic

ago, I
ll.

Dec 84

400-83
0016

14p.

Inform
ation

Analys
es (07

0) --
Viewpo

fAts (
120)

MFO1 /
PCO1 P

lus Po
stage.

*Compu
ter Sc

ience
Educat

ion; E
lement

ary Se
condar

y

Educat
ion; *

Error
Patter

ns; Hi
gher E

ducati
on;

*Misco
ncepti

ons; *
Progra

ming

Persis
tent c

oncept
ual bu

gs exi
st in

how no
vices,

 from

primar
y scho

ol to
colleg

e age,
 progr

am and
 under

stand
progra

ms. Th
ese

bugs a
re not

 speci
fic to

 a giv
en pro

grammi
ng lan

guage
but ap

pear t
o

be lan
guage-

indepe
ndent.

 The t
hree d

iffere
nt cla

sses o
f bugs

 are:
(1)

parall
elism,

 the a
ssumpt

ion th
at dif

ferent
 lines

 in a
progra

m can
be

active
 at th

e same
 time

or in
parall

el; (2) in
tentio

nality
, the

attrib
ution

of goa
l dire

ctedne
ss or

foresi
ghtedn

ess to
 the p

rogram
;

and (3
) egoc

entris
m, the

 assum
ption

that t
here i

s more
 of th

e

progra
mmer's

 meani
ng for

 what
he or

she wa
nts to

 accom
plish

in the

progra
m than

 is ac
tually

 prese
nt in

the co
de he

or she
 has w

ritten
.

All of
 these

 bugs
appear

 to de
riva f

rom th
e idea

 that
there

is a

hidden
 mind

in the
 progr

amming
 langu

age th
at has

 intel
ligent

,

interp
retive

 power
s. Eac

h of t
he thr

ee typ
es of

bugs i
s desc

ribed
and

exempl
ified

using
studen

t erro
rs, an

d the
implic

ations
 for

progra
mming

instru
ction

are ad
dresse

d. (23
 refer

ences)

(Autho
r/MES)

4*****

* Reprod
uction

s supp
lied b

y EDRS
 are t

he bes
t that

 can b
e made

*

*

from t
he ori

ginal
docume

nt.

*

**1 **
****t

P

Programming Misconceptions

at the K-12 Level

Monika Mladenović1, Žana Žanko
2 and

Ivica Boljat
1

1Faculty of Science, University of Split, Split,

Croatia
2Elementary school “Mejaši”, Split, Croatia

Synonyms

Block-based programming languages; K-12 nov-

ices;Misconceptions; Programming; Programming

context; Text-based programming languages

Overview

As computing today is included in many fields,

there are many efforts, by science or national

communities, to engage K-12 students in pro-

gramming through national curriculums, many

movements, and new programming tools. How-

ever, teaching introductory programming is not as

successful as we would like it to be. Various

assessments of student knowledge reveal flawed

understandings of the taught concepts,
which we

call misconceptions. Misconceptions in program-

ming refer to incorrect models of some program-

ming concepts. Despite the emergence of a

plethora of new programming languages, students

experience the same or similar misconceptions as

they did more than 30 years ago. Identifying mis-

conceptions can be crucial to minimize or even

prevent misconceptions for both teachers and stu-

dents alike. Over the last few decades, numerous

researchers have classified different types of mis-

conceptions and the problems they cause when

novices try to learn to program. Most studies

about misconceptions are conducted at the under-

graduate or graduate level using text-based pro-

gramming languages, while there is a lack of

similar researches at the K-12 level. As K-12 stu-

dents are in the early stages of cognitive develop-

ment and have fewer preconceptions than

undergraduates or graduates, it is reasonable to

expect that they are not facing the same difficulties.

With the development of visual block-based

programming languages, such as Scratch, designed

for the younger generation of programming nov-

ices, there is a new scope of possible additional

misconceptions and/or possibility to minimize

known misconceptions. In comparison to the text-

based programming languages, block-based pro-

gramming languages have the advantage of elimi-

nating syntax problems thus allowing students to

focus on problem-solving instead of syntax.

Besides focusing students on problem-solving,

block-based programming languages offer new

programming context like programming games,

storytelling, animations, and other. Block-based

programming languages enter into all educational

levels (Mladenović et al. 2016a), but the most

sensitive age group are K-12 programming nov-

ices. When educating K-12 programming novices’

© Springer Nature Switzerland AG 2019

A. Tatnall (ed.), Encyclopedia of Education and Information Technologies,

https://doi.org/10.1007/978-3-319-6001
3-0_234-1

RESEARCH

CONTNBImON$

A Diagnosis of Beginning

Programmers'

Misconceptions of

BASIC Programming

Statements

P/RAYE BAYMAN and RICHARD E. MAYER University of California-Santa Barbara

This project was supported

by the National Institute of

Education, Program in

Teaching and Learning,

under Grant NIE-G80-0118.

Richard Welker assisted in

data tabulation. A more

detailed report of this project

is available from the

authors [1].

Authors' Present Address:

Piraye Bayman and Richard

E. Mayer, Department of

Psychology, University of

California-Santa Barbara,

Santa Barbara, California

93106.

Permission to copy without

fee all or part of this material

is granted provided that the

copies are not made or

distributed for direct

commercial advantage, the

ACM copyright notice and

the title of the publication

and its date appear, and

notice is given that copying

is by permission of the

Association for Computing

Machinery. To copy

otherwise, or to republish,

requires a fee and/or specific

permission. © 1983 ACM

0001-0782/83/0900-0677 75¢

I. INTRODUCTION

The main focus of this paper concerns "what is learned"

when a beginning user is taught a computer programming

language such as BASIC. The outcome of learning can be

viewed in two distinct ways: (1) Learning BASIC involves the

acquisition of new information and new rules, such as w h e n

to use quotes in a PRINT statement or how to produce a

conditional loop using an IF statement. (2) Learning BASIC

involves the acquisition of a mental model, such as the idea of

memory spaces for holding numbers.

This study explores the idea that the learning of BASIC

involves more than the acquisition of specific facts, rules, and

skills. Beginning programmers also develop mental models for

the language in the process of learning the essentials of

BASIC. Moran [6] suggests that the user develops a "concep-

tual model" of the system as he or she learns to use it. Moran

defines the user's conceptual model as the knowledge that

organizes how the system works. User models may not be

accurate or useful representations of "what is going on inside

the computer." However, most instructional effort is directed

solely at helping the learner acquire the new information and

behaviors without giving much guidance to the learner for

the acquisition of useful mental models.

Mayer [3] has suggested a framework for describing the

internal transformations that occur for elementary BASIC

statements. In particular, any BASIC statement can be concep-

tualized as a list of transactions. A transaction is a simple

proposition asserting some action performed on some object at

some location in the computer. For example, LET D = 0

involves the following transactions: Find the number is mem-

ory space A. Erase the number in memory space A. Find the

number indicated on the right of the equals sign. Write this

number in memory space A. Find the next statement in the

program.

ABSTRACT: In the process of

learning a computer language,

beginning programmers may

develop mental models for the

language. A mental model refers to

the user's conception of the

"invisible" information processing

that occurs inside the computer

between input and output. In this

study, 30 undergraduate students

learned BASIC through a self-

paced, mastery manual and

simultaneously had hands-on access

to an Apple II computer. After

instruction, the students were tested

on their mental models for the

execution of each of nine B A S I C

statements. The results show that

beginning programmers---althoagh

able to perform adequately on

mastery tests in program

generation--possessed a wide

range of misconceptions concerning

the statements they had learned.

This paper catalogs beginning

programmers' conceptions of "what

goes on inside the computer" for

each of nine B A S I C statements.

September 1983 Volume 26 Number 9

Communications of the ACM 677

Variable Evaluation: an Exploration of Novice

Programmers’ Understanding and Common

Misconceptions

Tobias Kohn
ETH Zurich

Universitätstrasse 6

CH-8092 Zurich

kohnt@inf.ethz.ch

ABSTRACT
For novice programmers one of the most problematic con-

cepts is variable assignment and evaluation. Several ques-

tions emerge in the mind of the beginner, such as what does

x = 7 + 4 or x = x + 1 really mean? For instance, many

students initially think that such statements store the entire

calculation in variable x, evaluating the result lazily when

actually needed. The common increment pattern x = x + 1

is even believed to be outright impossible.

This paper discusses a multi-year project examining how

high school students think of assignments and variables. In

particular, where does the misconception of storing entire

calculations come from? Can we explain the students’ think-

ing and help them develop correct models of how program-

ming works?

It is particularly striking that a model of the computer as

a machine with algebraic capabilities would indeed produce

the observed misconceptions. The misconception might sim-

ply be attributed to the expectation that the computer per-

forms computations the exact same way students are taught

to in mathematics.

Keywords
Programming; misconceptions; variables; novices; learning

1. INTRODUCTION

Computer science is not only an important field in the sci-

ences but also offers some unique and highly relevant contri-

butions to general education. Accordingly, there are numer-

ous efforts to establish computer science in K-12 education

and make the merits of algorithmic thinking available to the

general population.

Programming is a fundamental part of CS education. To

be successful in teaching programming, however, it is imper-

ative that we study the mistakes and comprehension of our

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

SIGCSE ’17, March 08 - 11, 2017, Seattle, WA, USA

c© 2017

Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN

978-1-4503-4698-6/17/03. . . $15.00

DOI: http://dx.d
oi.org/10.114

5/3017680.30
17724

students. With a good understanding of where the difficul-

ties lie we can much better guide our students to success.

A particularly difficult topic in learning to program are

variables and assignments. First reports date back more

than thirty years (see, e. g., [3]). Numerous studies followed,

most of which concentrated on students at university level

(see the section about related work). It is highly possible,

though, that the difficulties with variables and assignments

are due to some deeper misconception about how a com-

puter program is actually being executed. There might also

be some differences between students at high school and uni-

versity level.

In this paper we present some misconceptions of high

school students in connection with variables, assignments,

and the time of evaluation. For this study, we analyzed stu-

dents’ tests, collected during four years of teaching Python

programming in high school. In our setting, the program-

ming course is part of classes in advanced and applied math-

ematics. In addition to programming we also teach some

math classes. This allows us to directly compare the stu-

dents’ work in mathematics and programming, even though

a student rarely has the same teacher for both classes.

1.1 Mathematical Techniques in Programming

During classroom sessions some students distinctly ap-

plied techniques and methods from mathematics to pro-

gramming. This might lead to incorrect results. Some stu-

dents, for instance, started their programs to solve quadratic

equations with the following two lines:

x = unknown

quEq = a ∗ x∗∗2 + b ∗ x + c = 0

In informal interviews, students explained that they have to

tell the computer first what a quadratic equation is before

they can provide the actual solutions. Based on such in-

stances of misapplication we looked for further examples and

evidence that some misconceptions in programming might

be due to mathematical practices applied in the wrong places.

Based on the collected information we assume that stu-

dents apply a model of mathematical substitution to pro-

gramming, leading to the observed mistakes. More pre-

cisely, when students perform calculations in mathematics

they frequently substitute parameters and variables, mak-

ing use of previously established relationships (e. g., know-

ing that y = 2x, we can replace y in subsequent calculations

by 2x. This works even in the case where we do not know

the value of x). Roughly a third of our students in program-

ACM

345

Detecting and Und
erstanding Studen

ts’ Misconceptions

Related to Algorith
ms and Data Struc

tures

Holger Danielsiek

holger.danielsiek@
udo.edu

Wolfgang Paul

wolfgang.paul@udo.edu
Jan Vahrenhold

jan.vahrenhold@udo.edu

Faculty of Compute
r Science, Technisc

he Universität Dortm
und

44227 Dortmund, G
ermany

ABSTRACT

We describe the first results of our work towards a concept

inventory for Algorithms and Data Structures. Based on

expert interviews and the analysis of 400 exams we were

able to identify several core topics which are prone to error.

In a pilot study, we verified misconceptions kn
own from the

literature and identified previously unknown misconceptions

related to Algorithms and Data Structures. In addition to

this, we report on methodological iss
ues and point out the

importance of a two-pronged approach to data collection.

Categories and Subject Descriptors: K.3.2 [Computers

and Education]: Com
puter and Information Science Educa-

tion

General Terms: Algorithms.

Keywords: Misconceptions, C
oncept Inventori

es, CS1/2.

1. INTRODUCTION

Studies concerni
ng first-year stud

ents’ software de
sign and

programming abilities show that a considerable number of

students do not know how to program at the end of their in-

troductory computer-science courses [12]. To make matters

worse, related studies show this problem to persist through-

out whole university careers and that a sizeable portion of

graduating students still do
not know how to design software

or to program properly [4, 11]. This phe
nomenon clearly re-

quires a multicausal explan
ation, but at least some of the

causes can be linked to students’ misconceptions.

Concept invento
ries are standard

ized assessment tools that

help in the analysis of stude
nts’ concepts or

misconceptions

regarding a collection of accepted conceptual fram
eworks.

While previous studies mainly focussed on misconceptions

related to programming or (object-oriented)
modelling, lit-

tle attention has so far been paid to misconceptions rel
ated

to modelling and analyzing a problem’s structure and solu-

tion, i.e., to the field of Algorithms and Data Structures.

Permission to make
digital or hard copie

s of all or part of th
is work for

personal or classroo
m use is granted witho

ut fee provided that
copies are

not made or distribu
ted for profit or com

mercial advantage a
nd that copies

bear this notice and
the full citation on th

e first page. To copy
otherwise, to

republish, to post on
servers or to redistrib

ute to lists, requires
prior specific

permission and/or a
fee.

SIGCSE’12, Februar
y 29–March 3, 2012

, Raleigh, North Car
olina, USA.

Copyright 2012 ACM
978-1-4503-1098-7/

12/02 ...$10.00.

Previous Work.
Most work on misconceptions in Computer Science, e.g.

[5, 9, 13, 14, 16], is related to object-orientatio
n which is

not the focus of our study. In contrast, only few observa-

tions have been
made about misconceptions rel

ated to algo-

rithms. Seppälä et al. [15] presen
t a study of the build-heap

algorithm that was conducted using algorithm simulation

exercises, and Ginat, in a series of articles, e.g. [
6], elabo-

rates on conceptual difficulties with solving puzzles.

Concept inventories in Computer Science (or rather pi-

lot versions) have been described for Digital Logic [8] and

(the programming part of) CS1 [10, 16]. Goldman et al. [7]

describe the application of a multi-stepped Delphi process

to identify sets of topics fundamental to CS1-related pro-

gramming, Discrete Mathematics, and Logic Design. Build-

ing upon this work, Herman et al. [8] work towards a con-

cept inventory for Digital Logic. Similarly, Kaczmarczyk et

al. [10] report on
misconceptions rel

ated to memory models

and the assignment of data in the context of th
e declaration

of primitives. Tew and Guzdial [16] repor
t on a “validated

assessment of fundamental CS1 concepts” where the main

focus is on abstracting over heterogeneo
us programming lan-

guages encompassing a wide variety of textbooks. Almstrum

et al. [1] report o
n a working group focussed on concept in-

ventories. They give a comprehensive introduction to the

terminology and propose and outline a comprehensive ap-

proach to developing a concept inventor
y.

2. DESIGN OF A CON
CEPT INVENTORY

In developing a con
cept inventory fo

r Algorithms and Data

Structures, we closely follow the process proposed by Alm-

strum et al. [1]: After an initial phase dev
oted to identifying

fundamental concepts (u
sing input from various sources s

uch

as instructors or papers), two possible paths can be taken

to develop pilot multiple-choice items. The first, direct way

is to generate distractors based
upon the suggestion of sub-

ject matter experts, ha
ve an instructor administer an alpha

version of these items, and perform a frequency analysis to

determine common misconceptions. The second, more in-

volved way is to create the test items in a feedback-loop on

the basis of student-based
investigations using open-ended

questions. In the final phase th
e instrument is administered,

its validity is assessed using statistical methods, and it is it-

eratively revised on the basis of statistic
al analyses.

Scope of the Study.

We report on the first two stages of this process, i.e. the

identification of fundamental concepts an
d the development

21

1

Misconceptions and Attitudes that Interfere with Learning to Program
Michael Clancy

Introduction
An instructor of an introductory programming course, on grading exams, notices

that a significant number of students are coming up with the same wrong answers; a

student arrives at the instructor’s office with program bugs relating to language

constructs covered a month ago and exercised ever since; a teaching assistant says,

“I tell them and tell them, but they still don’t get it right!” The instructor or t.a. might wonder whether the students aren’t reading the

textbook or not paying attention in lecture. More likely, however, the students are
trying to learn. They’re trying to build understanding of a concept, however, not just

from instruction but from experimentation, analogies to other concepts, intuition,

and other knowledge. Often inaccurate understanding, represented by systematic

misconceptions1
, is the result. Symptoms of misconceptions range from errors

involving the details of a given procedure to complete rejection of practices that

students are intended to adopt.
Identifying misconceptions and their causes, and devising ways to address them,

constitute a significant area of science education research, and there is a

considerable literature on how misconceptions and inappropriate attitudes

complicate learning. (See National Research Council (1997) for some examples.)

Programmierunterricht – Chancen und Herausforderungen Dennis Komm Fachschaftstag Bern – 3.12.2024 13 / 31

Was ist eine Variable?
Fehlvorstellung 1

Was ist eine Variable?

Mathematik-Aufgabe. Berechne x:

20 = 2 · x + 2
⇐⇒ 18 = 2 · x

⇐⇒ 9 = x

⇐⇒ x = 9

Aber x war eigentlich die ganze Zeit 9
. . . auch schon in der ersten Zeile

In diesem Sinne ist x keine «Variable» (sondern eine «Unbekannte»)

Programmierunterricht – Chancen und Herausforderungen Dennis Komm Fachschaftstag Bern – 3.12.2024 14 / 31

Was ist eine Variable?

Mit einer solchen Intuition des Begriffs «Variable» ergibt der folgende Code keinen Sinn

1 x = 1
2 print(x)
3 x = 5
4 print(x)
5 x = 10
6 print(x)

In der Progammierung ist eine Variable tatsächlich «variabel»

Dies ist der Grund für einige Fehlvorstellungen

Mathematische Sätze sind statische Wahrheiten

Objekte in der Programmierung sind zeitabhängig

Ein Programm ist eine statische Beschreibung eines dynamischen Prozesses
Programmierunterricht – Chancen und Herausforderungen Dennis Komm Fachschaftstag Bern – 3.12.2024 15 / 31

Was ist eine Variable?

SuS verstehen Variablen oft wie in der Mathematik

Was ist die Ausgabe des folgenden Programms?

1 x = 5
2 y = x * x
3 x = 8
4 print(8 * 8)

Programmierunterricht – Chancen und Herausforderungen Dennis Komm Fachschaftstag Bern – 3.12.2024 16 / 31

Was ist eine Variable?

Probleme

Wie viele Zahlen passen in eine Variable?

Warum kann keine Formel in einer
Variablen gespeichert werden?

Ist eine Variable nach Gebrauch leer?

Programmierunterricht – Chancen und Herausforderungen Dennis Komm Fachschaftstag Bern – 3.12.2024 17 / 31

Das Gleichheitszeichen
Fehlvorstellung 2

Welche Bedeutung hat das Gleichheitszeichen?

Mathematik-Aufgabe 2. Berechnen Sie z:

x = 15
y = x + 6
z = 2 · y

=⇒ z = 2 · (x + 6)
=⇒ z = 2 · (15 + 6)
=⇒ z = 2 · 21
=⇒ z = 42

In der Mathematik bedeutet «y = x + 6», dass y durch x + 6 ersetzt werden kann
Wenn immer wir ein y vorfinden, können wir stattdessen x + 6 schreiben

Programmierunterricht – Chancen und Herausforderungen Dennis Komm Fachschaftstag Bern – 3.12.2024 18 / 31

Welche Bedeutung hat das Gleichheitszeichen?

Dieses Konzept auf den folgenden Code anzuwenden ergibt keinen Sinn

1 x = 0
2 0 = 0 + 1
3 print(0)

1 x = 0
2 x = x + 1
3 print(((x + 1) + 1) + 1)

Und wenn wir schon dabei sind . . .

die Gleichung x = x + 1 ergibt mathematisch auch nur wenig Sinn

und wenn x = 0 gilt, dann gilt auch 0 = x, was in wiederum in der Programmierung keinen
Sinn ergibt

Programmierunterricht – Chancen und Herausforderungen Dennis Komm Fachschaftstag Bern – 3.12.2024 19 / 31

Welche Bedeutung hat das Gleichheitszeichen?

In der Programmierung weist «=» den Wert rechts der Variablen links zu

In der Mathematik ist x = x + 1 eine Gleichung

In der Programmierung ist x = x + 1 eine Zuweisung

Mathematik und Programmierung haben nicht dieselbe Sprache

Es gibt Ausnahmen
– Pascal (ALGOL) verwendet “:=”
– Logo using “make”

Programmierunterricht – Chancen und Herausforderungen Dennis Komm Fachschaftstag Bern – 3.12.2024 20 / 31

Welche Bedeutung hat das Gleichheitszeichen?

. . . und das verwirrt von Zeit zu Zeit auch Expertinnen und Experten

Der «Linux Backdoor Attempt» von 2003

Programmierunterricht – Chancen und Herausforderungen Dennis Komm Fachschaftstag Bern – 3.12.2024 21 / 31

Schleifen
Fehlvorstellung 3

Schleifen

Der «Lehrplan 21» stellt Schleifen vor Variablen

Jedoch brauchen for- und while-Schleifen Variablen, um Sinn zu ergeben

Deswegen gibt es in Logo die repeat-Schleife

1 repeat 4 [
2 forward 100
3 right 90
4]

Übernommen in TigerJython

1 repeat 4:
2 forward(100)
3 right(90)

Mit dem repeat-Block können Schleifen schon im Kindergarten thematisiert werden
Programmierunterricht – Chancen und Herausforderungen Dennis Komm Fachschaftstag Bern – 3.12.2024 22 / 31

Der Superbug
Die wahrscheinlich grösste Fehlvorstellung

Was muss ein Computer können?

. . . nicht wirklich viel

Turingmaschine [Alan Turing, 1936]

Multiplikation ist nur wiederholte Addition

Addition ist wiederum nur wiederholtes Erhöhen um Eins

Wenige Grundoperationen reichen

Turing-Vollständigkeit

Alan Turing [Wikimedia]

Programmierunterricht – Chancen und Herausforderungen Dennis Komm Fachschaftstag Bern – 3.12.2024 23 / 31

Nagut, aber was kann ein Computer denn eigentlich?

Der Computer ist eine «Blackbox», insbesondere für Anfängerinnen und Anfänger

Es ist in keiner Weise klar, was der Computer «versteht» oder «kann»

Anfängerinnen und Anfänger neigen dazu, mit ihm wie mit einem Menschen zu interagieren

In Zeiten von Siri, Alexa und ChatGPT ist das nicht überraschend

Das kann in der Praxis beobachtet werden, z. B. «Natürlich enthält eine Variable mit dem
Namen maximum einen maximalen Wert. Der Computer weiss das, weil es klar ist.»

MI 2.2e [5–6] SuS verstehen, dass ein Computer nur vordefinierte Anweisungen ausführen
kann und dass ein Programm eine Abfolge von solchen Anweisungen ist.

Programmierunterricht – Chancen und Herausforderungen Dennis Komm Fachschaftstag Bern – 3.12.2024 24 / 31

Die «Notional Machine»

Mache die Maschine so einfach wie möglich
Ausführende Maschine konzeptuelle Maschine («Notional Machine»)

Der Zustand der Maschine sollte sichtbar sein

«Glasbox» statt «Blackbox»

Damit ist sie einfach zu beherrschen

Damit ist sie aber auch beschränkt und kann nur wenige Probleme direkt lösen

Bereits das Lösen einfacher Probleme erfordert Problemlösefähigkeiten

Programmierunterricht – Chancen und Herausforderungen Dennis Komm Fachschaftstag Bern – 3.12.2024 25 / 31

Turtlegrafik
Reptilien vs. Superbugs

Turtlegrafik

Programmiere «die Turtle» statt des Computers

Wenige Befehle, um sich über den Bildschirm zu bewegen und eine Linie zu zeichnen

Wenige (implizite) Variablen beschreiben den Zustand

1 to rectangle
2 setpencolor blue
3 repeat 4 [
4 forward 200
5 right 90
6]
7 end

Programmierunterricht – Chancen und Herausforderungen Dennis Komm Fachschaftstag Bern – 3.12.2024 26 / 31

Turtlegrafik

Die Turtle ist eine greifbare «Notional Machine»

Man kann sich einfach mit ihr identifizieren

Die Befehle entsprechen unmittelbar beobachtbaren Aktionen, die von der Turtle ausgeführt
werden, z. B. forward, backward, left, right

Mit der Turtle entsteht eine einfache nicht-technische Sprache, z. B. das Definieren eines
Befehls als «der Turtle ein neues Wort beibringen»

Die Turtle kann während der Ausführung beobachtet werden

Programmierunterricht – Chancen und Herausforderungen Dennis Komm Fachschaftstag Bern – 3.12.2024 27 / 31

Ein Spiral-Curriculum mit der Turtle

WebTigerPython ohne Turtle

Turtle / Roboter mit WebTigerPython

Turtle / Roboter mit textbasiertem Logo

Turtle / Roboter mit blockbasiertem
parametrisiertem Logo

Turtle / Roboter mit blockbasiertem Logo

Programmierunterricht – Chancen und Herausforderungen Dennis Komm Fachschaftstag Bern – 3.12.2024 28 / 31

Ein Spiral-Curriculum mit der Turtle

Visit https://xlogo.inf.ethz.ch and https://webtigerpython.ethz.ch

Programmierunterricht – Chancen und Herausforderungen Dennis Komm Fachschaftstag Bern – 3.12.2024 29 / 31

Und dann noch etwas. . .

Co-Pilots und Co.

Communications of the ACM Tom’s Hardware

Programmierunterricht – Chancen und Herausforderungen Dennis Komm Fachschaftstag Bern – 3.12.2024 30 / 31

Co-Pilots und Co.

Was ist die Aufgabe von Schule?

Was ist die Aufgabe von Informatikunterricht?

Was ist die Aufgabe von Programmierunterricht?

Programmierunterricht – Chancen und Herausforderungen Dennis Komm Fachschaftstag Bern – 3.12.2024 31 / 31

Vielen Dank für die
Aufmerksamkeit

